
Spherical
Cube
Maps

Robert Kooima
2012

CONTENTS

Contents 2

1 Spherical Cube Map 3
1.1 Spherical sampling . 3
1.2 Paging . 4

2 SCM Pre-processing 9
2.1 SCMTIFF . 9

Convert . 9
Combine . 11
Mipmap . 11
Border . 11
Finish . 12
Normal . 12
Sample . 13

2.2 SCMVIEW . 13
2.3 Examples . 15

A Basic Panorama . 15
A Merged Planetary Dataset . 16
A Normal Map . 21

2.4 Automation . 22

3 SCM Render Library 25
3.1 API . 25
3.2 SCM path . 26

4 SCM Example Applications 28
4.1 Sphere Definition File . 28

Basic Stereo Panorama . 28
Multi-image Panorama . 29
Displacement-mapped Illuminated Planet 30

4.2 Panoview Usage . 31
4.3 Troubleshooting . 31

A Integer Binary Logarithm 33

B LRO DTM Makefile 34

C Notes 36

2

SPHERICAL CUBE MAP

1.1 SPHERICAL SAMPLING

The mapping of image data onto the sphere is intuitively similar to a standard OPENGL
cube map. Begin by considering an n×n raster image applied to the +Z face of a cube.
For a spherical cube map, the pixel at row r and column c gives a sample at a position
(α,β) on the sphere, where

α = 90◦
c+ 1/2

n
−45◦ β = 90◦

r+ 1/2

n
−45◦.

This corresponds to the 3D vector

v =

 sinα cosβ

−cosα sinβ

cosα cosβ

 .

This vector has length
√

cos2 α + sin2
α cos2 β , but when normalization is re-

quired, one will probably prefer the more familiar divisor
√

v2
x + v2

y + v2
z .

Vectors within the remaining cube faces are simple 90° rotations of the definition
for +Z, trivially implemented in the form of swizzles and negations. For each face, the
vector (x′,y′,z′) is defined in terms of (x,y,z) as follows.

X −X Y −Y Z −Z

x′ = z −z x x x −x
y′ = y y z −z y y
z′ = −x x −y y z −z

The cube face orientations given by this swizzle table match the definition of a
standard OPENGL linear cube map. It is the non-linear mapping from row and column
to 3D vector that puts the “spherical” in “spherical cube map.” While more expensive
to compute, this mapping is more amenable to the delivery of high resolution spherical
data sets, as it provides a more uniform tesselation of the sphere, and thus a more
consistent density of data at every point on its surface.

As depicted by Figure 1.1(a), linear cube map samples stretch in the center of
the face and compress toward the edges. While all tessellations of the sphere neces-
sarily demonstrate some degree of similar non-uniformity, the spherical cube map,
Figure 1.1(b), is visibly closer to the impossible ideal. Specifically, the very smallest
samples of a linear cube map, found at the corners, have only 19% of the area of the
largest samples at the cube face centers. That is, samples near the center of a cube
map face cover more than five times the area of samples at the corners. In contrast, the
smallest samples of a spherical cube map face, found at the centers of the face edges,

3

CHAPTER 1. SPHERICAL CUBE MAP 4

(a) Linear cube map (b) Spherical cube map (c) Overlaid

Figure 1.1: A comparison of linear and spherical cube map sample uniformity

have 70% of the area of the largest samples at the face centers.1 The corner samples of
an SCM are actually not the smallest, with 76% the area of the center samples.

Similarly, the shortest edge of the linear cube map is only 47% of the length of the
longest, while the shortest edge of the spherical cube map is 70% of the length of the
longest.2 Notably, the vertical and horizontal edges along the center of the SCM page
all have equal lengths, which means that an SCM data set has constant data density
along the equator, as well as along the four 90° meridians.

1.2 PAGING

While the SCM mapping does a good job of uniformly representing data on the surface
of the sphere, we’re not content to simply map six large images onto the six faces of an
inflated cube. Large images are slow to load, and the ultimate objective of the SCM

data structure is to support real-time viewing with near-instantaneous data access. To
render a multi-giga-pixel spherical data set in real-time, an application must calculate
the specific subset of the data visible to the user in each frame, as well as the minimum
data resolution necessary to fill all pixels of the user’s display. Toward that end, the
SCM represents a large data set in the form of a number of small pages, at a range of
resolutions, organized as a set of six quadtrees.

Cube faces are recursively subdivided, as shown in Figure 1.2, with each four-sided
face cut into four child faces, and the newly-created center vertex placed on the surface
of the sphere. Each face of the resulting polyhedron gives one spherically-mapped
page of image data. A full SCM tree gives all levels of detail, up to and including the
native resolution of the source data set. The six pages at depth zero (Figure 1.2(a)) give
low-resolution coverage of the entire sphere. The 24 pages at depth one (Figure 1.2(b))
give coverage at twice that density. With each successive increase in depth, the number
of pages and the total quantity of image data increases by a factor of four.

Let d be the number of recursive subdivisions applied to the cube. The total number

CHAPTER 1. SPHERICAL CUBE MAP 5

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

Figure 1.2: Recursive subdivisions of the cube.

d w512 h512 w360 h360 count

0 2048 1024 1440 720 6
1 4096 2048 2880 1440 30
2 8192 4096 5760 2880 126
3 16,384 8192 11,520 5760 510
4 32,768 16,384 23,040 11,520 2046
5 65,536 32,768 46,080 23,040 8190
6 131,072 65,536 92,160 46,080 32,766
7 262,144 262,144 184,320 92,160 131,070

Table 1.1: Effective resolutions and page counts of SCM trees with various depths and
page sizes.

of pages in an SCM tree of depth d is

count(d) = 22d+3−2.

Let n be the size in pixels of each page of image data. The effective sphere map
resolution of an SCM tree with page size n and depth d is

width(d) = n2d+2 height(d) = n2d+1.

For reference, Table 1.2 shows the effective resolutions and page counts of SCM

trees with depths down to 7. Page size n = 512 is often used for power-of-two source
images, and n = 360 works well for geographic and planetary gridded data.

Each page is identified by an index between 0 and count(d) giving the page’s
position in a breadth-first enumeration of the page tree. As with all basic definitions
shown so far, this root configuration coincides with the definition of a standard OPENGL
cube map. Pages zero through five map onto the faces of a cube as follows.

p0 =+X p1 =−X p2 =+Y p3 =−Y p4 =+Z p5 =−Z

The page index uniquely determines all of a page’s parameters. Its size, position,
and orientation on the sphere, plus its parent, children, and neighbors can all be
calculated in constant time given only the page index i. The next several equations
build the integer arithmetic giving this capability.

CHAPTER 1. SPHERICAL CUBE MAP 6

The levels of the SCM tree are enumerated in increasing order. Within each level,
the sub-pages of each root page are contiguous. Thus, each level `, 0≤ `≤ d consists
of six arrays of 2`×2` pages. The level of a given page i is

level(i) =
blog2 (i+2)c−1

2
.

This integer binary logarithm is used heavily when computing page index relationship,
and an efficient C implementation is given in Appendix A.

The root page of a page i, its earliest ancestor, is

root(i) = (i−2(4level(i)−1)) / 4level(i).

The pages of the 2`×2` array for each level and root are enumerated beginning at the
top left, going left-to-right and top-to-bottom. The rank of a page in this array is

rank(i) = (i−2(4level(i)−1)) % 4level(i).

Note the use of integer division and modulus, plus the useful symmetry in the definitions
of root and rank. The row and column in the array follow directly from this rank.

row(i) = rank(i) / 2level(i)

col(i) = rank(i) % 2level(i)

Given these, the SCM spherical mapping defined in Section 1.1 may be applied, and
the 3D position vector of each page corner may be determined. To the west and east,

αw = 90°
col(i)
2level(i)

−45° and αe = 90°
col(i)+1

2level(i)
−45°.

To the north and south,

βn = 90°
row(i)
2level(i)

−45° and βs = 90°
row(i)+1

2level(i)
−45°.

The vector pointing toward the north-west corner of page i is thus

vnw =

 sinαw cosβn

−cosαw sinβn

cosαw cosβn

 ,

subject to the table of swizzles and negations given in Section 1.1. The remaining
corners vne, vsw, and vse follow accordlingly.

Moving on, just as a page’s index uniquely determine its root, level, row, and col,
so too do these four values together uniquely determine an index.

index(f , `,r,c) = count(`−1)+ f 4`+ r 2`+ c.

CHAPTER 1. SPHERICAL CUBE MAP 7

Given this two-way set of definitions, parent, child, and neighbor relationships emerge.
The parent is one level higher,

parent(i) = index(root(i),

level(i)−1,

row(i) / 2,

col(i) / 2),

and the four children 0≤ k < 4 are one level lower,

child(i,k) = index(root(i),

level(i)+1,

2 · row(i)+ k / 2,

2 · col(i)+ k % 2).

The calculation of neighbor indices is a bit more complicated. In the trivial case, the
approach is identical to the calculation of a parent or child. One has only to increment
or decrement the row or column argument to index(f , `,r,c) to determine any adjacency.
However, finding neighbors across cube map face boundaries causes complications
due to the varying orientations of the roots. The face swizzle table comes into play and
the resulting cases are tedious to derive. They are fully enumerated here for reference
and ease of implementation.

north(f , `,r,c) = index

f ,
2,
2,
5,
4,
2,
2,

`,

`,

`,

`,

`,

`,

`,

r−1,
2`− c−1,

c,
0,

2`−1,
2`−1,

0,

c
2`−1

0
2`− c−1

c
c

2`− c−1

if r > 0
if f = 0
if f = 1
if f = 2
if f = 3
if f = 4
if f = 5

south(f , `,r,c) = index

f ,
3,
3,
4,
5,
3,
3,

`,

`,

`,

`,

`,

`,

`,

r+1,
c,

2`− c−1,
0,

2`−1,
0,

2`−1,

c
2`−1

0
c

2`− c−1
c

2`− c−1

if r < 2`

if f = 0
if f = 1
if f = 2
if f = 3
if f = 4
if f = 5

CHAPTER 1. SPHERICAL CUBE MAP 8

west(f , `,r,c) = index

f ,
4,
5,
1,
1,
1,
0,

`,

`,

`,

`,

`,

`,

`,

r,
r,
r,
0,

2`−1,
r,
r,

c−1
2`−1
2`−1

r
2`− r−1

2`−1
2`−1

if c > 0
if f = 0
if f = 1
if f = 2
if f = 3
if f = 4
if f = 5

east(f , `,r,c) = index

f ,
5,
4,
0,
0,
0,
1,

`,

`,

`,

`,

`,

`,

`,

r,
r,
r,
0,

2`−1,
r,
r,

c+1
0
0

2`− r−1
r
0
0

if c < 2`

if f = 0
if f = 1
if f = 2
if f = 3
if f = 4
if f = 5

As shorthand, let north(i) = north(root(i), level(i),row(i),col(i)), etc., and note
that our complication has a complication. Due to potential changes in page orienta-
tion, diagonal adjacency does not follow directly from nested evaluations of cardinal
adjacency. Instead,

northwest(i) =

{
north(west(i)) if root(i) = root(west(i))

west(north(i)) otherwise,

northeast(i) =

{
north(east(i)) if root(i) = root(east(i))

east(north(i)) otherwise,

southwest(i) =

{
south(west(i)) if root(i) = root(west(i))

west(south(i)) otherwise,

southeast(i) =

{
south(east(i)) if root(i) = root(east(i))

east(south(i)) otherwise.

This completes the set of mathematical tools needed to immediately determine all
parameters of any SCM page.

SCM PRE-PROCESSING

As a multi-page raster image, An SCM tree is naturally amenable to storage in the
form of a TIFF image file. In this form, SCM data is accessible to a variety of existing
applications and tools, most notably the libTIFF image library.

2.1 SCMTIFF

Spherical data sets in a variety of image formats are converted to SCM TIFF files by
the scmtiff utility. Given the variety of source data preparations, this conversion
involves multiple steps, and is often directed by a script or build system. scmtiff is a
multi-tool that implements all of the different processes needed when traversing the
path from raw data to usable SCM. It takes three global options followed by a list of
per-process options and a list of input files.

scmtiff -p 〈process〉 [-o 〈output〉] [options] 〈input〉 [. . .]

-p 〈process〉 Selects the SCM process. Alternatives include convert, combine,
mipmap, border, finish, normal, and sample. Each of these
processes is described here, and examples of complete conversions
are given below.

-o 〈output〉 Gives the name of the output file. If left unspecified, the default is
out.tif, unless otherwise noted.

-T Requests that process timing be collected and printed to the terminal
upon completion.

An SCM TIFF file produced by the scmtiff tool is a standard BigTIFF image,
suitable for processing using any BigTIFF-compatible software, including libTIFF

version 4 or later, and its related utilities.

Convert

scmtiff -p convert [-o 〈output〉] [options] 〈input〉 [. . .]

The convert process is the first and most basic, taking source data input and
producing SCM TIFF output. Source data with an equirectangular projection may be
provided in JPEG, PNG, or TIFF format, with up to four channels. Data with more
complex projection may be provided in PDS format, as attached-label IMG files or
detached-label LBL / IMG pairs. Channels may have 8 or 16-bit signed or unsigned
integer samples, or 32-bit floating point samples.

9

CHAPTER 2. SCM PRE-PROCESSING 10

If the output file name is not specified using the -o option to scmtiff, the default
name is generated by replacing the file extension of the input file name with .tif.
This is important when multiple input files are given on a single command line.1

convert has the most options of any process, as the parameters specified at the
first step are carried through into the final data product.

-n 〈n〉 Gives a value for n, the SCM page size. Default is 512.

-d 〈d〉 Gives a value for d, the SCM tree depth. Default is 0. See Section ??
for definitions and examples of how the selection of n and d affect
image resolution and file size.

-b 〈b〉 Overrides the number of bits per channel. By default, scmtiff uses
the bit depth specified by the input image file. If a change in bit
depth is desired, this value b is used instead. Values of 8 and 16
select integer samples and 32 selects floating point samples.

-g 〈g〉 Overrides the signedness of integer data. By default, scmtiff uses
the type specified by the input file, but if a change is desired, 0
specifies unsigned and 1 signed. This option has no effect if floating
point samples are selected.

-N 〈n0〉,〈n1〉 Specifies a normalization range. Unsigned integer samples have a
natural normalized range of (0,1), signed integer samples have the
normalized range of (−1,1), and floating point samples have the
full range of a 32-bit float. This option remaps each sample onto
the range (n0,n1). The choice of normalization depends largely on
the character of the input and the type of the output. The default
normalization retains the natural range of the data.

-E 〈w〉,〈e〉,〈s〉,〈n〉 Specifies a range for equirectangular inputs other than PDS. This
allows a JPEG, PNG, or TIFF to represent a subset of the sphere. The
default is 0◦, 360◦, −90◦, 90◦.

-L 〈λc〉,〈λ0〉,〈λ1〉 Specifies a longitudinal mask. This causes data to appear over a
given range of longitudes, fading out at the edges, thus allowing
the blended combination of separate source data files. This option
chooses a range of degrees centered at λc, extending to λc±λ1, and
fading with cubic drop-off to λc±λ0.

-P 〈φc〉,〈φ0〉,〈φ1〉 Specifies a latitudinal mask. This option chooses a range of degrees
centered at φc, extending to φc± φ1, and fading with cubic drop-
off to φc±φ0. Longitudinal and latitudinal masks may be applied
simultaneously.

CHAPTER 2. SCM PRE-PROCESSING 11

Combine

scmtiff -p combine [-o 〈output〉] [options] 〈input〉 [. . .]

The combine process is the second step in cases where a data set is provided in
a form spread across multiple data file. It merges multiple converted SCM TIFF input
files into a single SCM TIFF output file. It takes just one optional argument.

-m 〈mode〉 Specifies the operator mode used to combine samples. The max

mode selects the largest sample from each of the named files. The
sum mode is the default and sums all named files. The max mode
is often used when merging data sets of differing projection, while
the sum mode is used when combining data sets that have had a
longitudinal or latitudinal mask applied in the convert process.

Mipmap

scmtiff -p mipmap 〈input〉

The mipmap process generates the intermediate nodes of an SCM tree. In general,
the convert process generates tree leaves, the combine process merges trees, and the
mapmap process subsamples the result, enabling real-time display of the data at arbitrary
resolution. It is important to combine before mipmapping, as boundary artifacts may
remain apparent in the intermediate pages of combined mipmaps.

The mipmap process takes no parameters. In the interest of efficiency, mipmapping
occurs in place. The output file name option is ignored and subsampled pages are
appended to the existing file. The mipmap process generates as many subsampled
levels as possible, and in the common case, an input with depth d will have d−1 levels
appended to it.

Border

scmtiff -p border [-o 〈output〉] 〈input〉

In truth, an SCM with page size n is stored in a TIFF file with image width and height
n+2. The border process fills these extra pixels in the outermost rows and columns
of each page with pixels from the adjacent rows or columns of the four neighboring
pages. This provides each page with the context needed by the graphics hardware
to perform linear magnification filtering across page boundaries, effectively allowing
many small images to appear as a single very large image.2 If this step is not performed,
artifacts will appear in the output. In practice, the border process is expensive, as it
must decompress and recompress every page of the SCM.

CHAPTER 2. SCM PRE-PROCESSING 12

Finish

scmtiff -p finish [options] 〈input〉

The finish process calculates and appends SCM metadata for the given SCM TIFF

file. This metadata is three-fold: offsets, bounds, and description.

1. A sorted array of page indices and file offsets allows an SCM rendering applica-
tion to immediately determine exactly where each page appears in the SCM TIFF

file. Given an awareness of how points on the sphere map onto indices, the page
catalog generated by the finish process allows applications to straightforwardly
locate the unique SCM TIFF data that maps onto any point on the sphere at any
resolution.

2. The minimum and maximum values of each channel of each page allow a
displacement-mapping application to determine a tight 3D bounding volume for
each page. This enables efficient visibility determination and view culling.

3. An image description documents the provenance of an image, noting its source
and copyright holder.

Like mipmapping, the finish process occurs in place. The output file name option
is ignored and the generated data is appended to the input file.

-t 〈file〉 Specifies a text file containing an image description. The contents of
this file are read and embedded in the generated TIFF file.

-l 〈`〉 Specifies a leaf subdivision depth. This argument allows the depth of
the bounding value cache hierarchy to exceed the depth of the actual
page hierarchy. The rationale for this feature is complex, but as we
will see in Section 4.1, there is a mismatch between the resolution of
a displacement map and the mesh geometry that it displaces. Leaf
subdivision accounts for this mismatch. As a rule of thumb, ` should
give the base-two logarithm of the mesh’s down-sampling factor. For
example, when finishing a 512×512 displacement map for display
on a 128×128 mesh, log2 512/128 = 2, so specify `= 2. For most
imagery, leaf subdivision is not beneficial, and the default value of
zero should be used.

Normal

scmtiff -p normal [-o 〈output〉] [options] 〈input〉

The normal process computes a normal map for a given height map. The input
may have any number of channels and any format, but only the first channel is used,

CHAPTER 2. SCM PRE-PROCESSING 13

and the normalization of that channel is modified by the range of radii specified by
the command line option. The output will always have 3 channels of 8-bit unsigned
samples, scaled and biased to (0,1) as is standard practice in normal mapping, though
the normals are given in object space rather than tangent space.

Regardless of whether the input height map was bordered or finished, the output
normal map will be neither bordered nor finished. In contrast, a mipmapped input
height map will produce a mipmapped normal map output, and indeed one should
always normalize mipmaps instead of mipmapping normals, as a mipmapped normal
is not guaranteed to have unit length.

-R 〈r0〉,〈r1〉 Specifies the true range of radii represented by the normalized height
map input. This allows the true magnitude of the change in height to
be computed, which gives slope, which gives the normal vector.

Sample

scmtiff -p sample [options] 〈input〉

The sample process is not a tool for preprocessing SCM data, but for working
with already-processed data. It queries the contents of the SCM TIFF file named on the
command line, and produces no new SCM TIFF output. The sample process receives
queries as latitude-longitude pairs, in degrees, on stdin. It reports the results on
stdout.

-R 〈r0〉,〈r1〉 Specifies the true range of radii represented by the input. This allows
the magnitude of the query to be correctly reported, even if the data
has been renormalized during the convert process.

For example, to query the radius in meters of the landing point of Apollo 16, as
given by the merged lunar heightmap prepared in the example of Section 2.3:

1 echo "-8.973 15.500" | scmtiff -p sample -R 1728240,1748170 DTM.tif

2 1737382.875000

The sample process does not expect a finished SCM and will perform a scan of
the SCM TIFF file prior to responding to queries. Thus the very first query may take a
few moments to process, while subsequent queries will process immediately. If many
queries are to be made, the best practice is to concatenate them in a file.

2.2 SCMVIEW

The scmview utility enables interactive inspection and side-by-side comparison of
individual pages of SCM TIFF files. Figure 2.1 shows a screenshot of scmview in action.

CHAPTER 2. SCM PRE-PROCESSING 14

Figure 2.1: The scmview utility displaying four of the outputs of the conversion
described in Sections 2.3 and 2.3.

There, four SCM files are displayed together, with their pan, zoom, and page number in
sync. The user has focused upon Clavius, a region of interest on a lunar height map.
The first frame shows a converted equirectangular projection of the map, the second
shows a polar projection, and the third demonstrates their seamless merger. This output
is taken from the usage example of Section 2.3. The fourth frame shows a normal map
derived from the merged height map, discussed in Section 2.3.

The scmview utility takes a list of SCM TIFF files on the command line.

scmview [〈GLUT options〉] 〈input〉 [. . .]

Keyboard and mouse inputs are as follows.

Left Mouse . . . Click and drag to pan.

Right Mouse . . . Click and drag to zoom.

Return . . . Reset the pan and zoom.

Page Up . . . Go to the next page.

Page Down . . . Go to the previous page.

Shift Page Up . . . Scan for the next present page.

Shift Page Down . . . Scan for the previous present page.

7 9
×

1 3
. . . Go to one of the four child pages.

8
4 + 6

2
. . . Go to one of the four neighbor pages.

5 . . . Go to the parent page.

0 . . . Go to the root page.

CHAPTER 2. SCM PRE-PROCESSING 15

Figure 2.2: Bluebonnet-0-L.tif, an equirectangular full-sphere panorama

F1 . . . Normal view mode.

F2 . . . False color view mode.

Escape . . . Exit.

scmview is a GLUT application, and as such it takes the usual set of GLUT
command line options. The most useful of these is

-geometry 〈w〉x〈h〉 Display a window with size (w,h).

2.3 EXAMPLES

A Basic Panorama

The most straightforward SCM TIFF process uses a single image file giving an equirect-
angular spherical projection, such as that shown in Figure 2.2. This image is 32,768×
16,384 with 3 channels of 8-bit unsigned samples. The name Bluebonnet-0-L.tif
reflects that it was captured at the Bluebonnet Swamp Nature Center, it was the first of
several captures, and it gives the left channel of a stereoscopic pair.

Table 1.2 indicates that an image with this resolution is well-represented by an SCM

with page size n = 512 and depth d = 4. When finished, the SCM tree will have 2046
pages. The first step is to run the convert process to generate the leaves of this tree.
The output file name is chosen to reflect the parameters of the SCM as well as the state
of its processing. This convention is optional.

1 scmtiff -p convert -n 512 -d 4 -o Bluebonnet-0-L-512-4-M.tif \

2 Bluebonnet-0-L.tif

CHAPTER 2. SCM PRE-PROCESSING 16

If the output is examined using scmview, pages 510 through 2045 will be present
with a resolution of 514× 514. Image detail will closely reflect that of the input.
There will be mild projection distortion apparent in some pages, though the degree of
distortion will be far less than that at the top and bottom of the equirectangular input.
All pages will have a border of black pixels around the outside.

The second step is to run the mipmap process on this output to generate the inter-
mediate, subsampled pages.

1 scmtiff -p mipmap Bluebonnet-0-L-512-4-M.tif

Examination with scmview will show that pages 0 through 2045 are now all present.
Pages 0 through 5 will show full views along each of the axes, and pages 2 and 3 will
show nicely recovered polar views with all of the projection distortion in the input
rectified.

The third step fills the border pixels with adjacent page information. This process
alters the compressed size of each page, so it cannot be performed in-place. An output
file name is required and a new SCM TIFF file is generated.

1 scmtiff -p border -o Bluebonnet-0-L-512-4.tif \

2 Bluebonnet-0-L-512-4-M.tif

The output is a complete SCM tree. Figure 2.3 shows the first six pages of output
generated from the input in Figure 2.2.

The fourth and final step scans the file, noting the location and bounds of each page,
and appending this information to the end of the file. With this, a real-time interactive
application, such as the one described in the next chapter, can instantly locate, load, and
display any page. A brief description is added to an ASCII text file named desc.txt,

1 Bluebonnet Swamp Nature Center - 9 October 2011

2 Copyright (c) 2011 Robert Kooima

and the SCM TIFF is finished.

1 scmtiff -p finish -t desc.txt Bluebonnet-0-L-512-4.tif

A Merged Planetary Dataset

The following example is much more involved, merging multiple data sets captured
by the Lunar Reconnaissance Orbiter (LRO) to produce a globally-high-quality height
map of the moon. Deriving this process requires a close familiarity with the source
data, and a great deal of trial and error. However, this does represent real-world data
handling and usage of scmtiff.

The LRO height map is based primarily on a 100 meter-per-pixel digital terrain
model (DTM) derived by stereo reconstruction from imagery captured by the Wide

CHAPTER 2. SCM PRE-PROCESSING 17

Figure 2.3: The six root pages of the Bluebonnet SCM.

Angle Camera (WAC) of the Lunar Reconnaissance Orbiter Camera (LROC).3 This
data set, known as the Global Lunar 100 Meter DTM (GLD100), gives beautifully
clean terrain data over most of the moon, omitting only the poles, where illumination
and stereo disparity are insufficient for reconstruction.

In the interest of optimal image representation, GLD100 is provided in several parts,
with two different projections. Latitudes below 60° are given by eight equirectangular
projections, shown in Figure 2.4. Each of these is 27,291× 18,195 pixels in size,
totaling 109,164×36,390 pixels. Latitudes above 60° are given by two stereographic
polar projections, shown in Figures 2.5(a) and 2.5(b). Latitudes beyond 79° are not
represented.

Fortunately, GLD100 is registered with the Lunar Digital Elevation Model (LDEM)
captured by the Lunar Orbiter Laser Altimeter (LOLA).4 Due to the polar orbit of LRO
and the incredibly narrow field of view of LOLA, the coverage of LDEM is very sparse
at low latitudes, but excellent near the poles. GLD and LDEM compliment one another
in this regard, and we can use the latter to fill the gaps in the former. Figures 2.5(c)
and 2.5(d) show polar projections of LDEM that align with those of GLD. In general,
GLD is preferred to LDEM as the coverage and character of stereo reconstructed data
is superior to laser altimetry data.

We need to select a page size and tree depth appropriate for this data set. There are

CHAPTER 2. SCM PRE-PROCESSING 18

(a) GLD E300N0450 (b) GLD E300N1350 (c) GLD E300N2250 (d) GLD E300N3150

(e) GLD E300S0450 (f) GLD E300S1350 (g) GLD E300S2250 (h) GLD E300S3150

Figure 2.4: The eight equirectangular projections of GLD100.

(a) GLD P900N0000 (b) GLD P900S0000 (c) LDEM 60N (d) LDEM 60S

Figure 2.5: The two polar projections of GLD100 and LDEM.

many considerations.

1. To properly represent the source data, we select n and d such that the effective
width, w = n2d+2, closely matches the total horizontal resolution of the input.

2. Large n incurs high I/O latency. RAM-to-VRAM data transfers take time, and if
a page upload consumes a significant fraction of a frame period then the frame
rate is likely to break up during high I/O load. Given 2012 era hardware, we’ll
want n around 512.

3. For a given w, small n requires large d. This increases the total number of pages
in flight at any given moment, as well as the number of texture image units
consumed by the renderer. This is usually not a problem, but depending upon
the hardware, one may encounter a limit.5

4. The page granularity of a height map impacts the effectiveness of visibility
testing, as small pages allow tighter bounding volumes than large pages. This
consideration does not apply to color maps or normal maps.

CHAPTER 2. SCM PRE-PROCESSING 19

5. n should be an even number to ensure no artifacts arise during the mipmapping
process.

Given w = 109,164, arbitrarily choosing d = 5, and solving, we find n = 852.
That’s quite high. Choosing d = 6, we find n = 426, which is reasonable from most
perspectives. SCM parameters n = 426 and d = 6 will give an effective resolution of
109,056× 54,528 in 32,766 pages. This is a couple pixels short, but very close to
perfect.

It’s important to remember that an SCM data product is essentially a temporary
cache for visualization. It’s not a permanent archive, so source integrity need not be
considered precious and we’re free to renormalize. This will let us benefit from any
smoothing that occurs during resampling and reprojection and take full advantage of the
output bit depth. Both GLD and LDEM are signed 16-bit samples ranging from roughly
−9160 m to 10,770 m, giving height values relative to the moon’s average radius of
1,737,400 m. These values give our normalization range. Of course, normalization
maps the data onto (0,1), so there’s no longer any point in using a signed sample, so
we’ll override the IMG data type and force unsigned output.

Given these parameters, the conversion of the equirectangular inputs of Figure 2.4
is as follows.

1 scmtiff -p convert -n 426 -d 6 -N -9160,10770 -g 0 WAC_GLD100_*.IMG

The eight output SCMs will be combined using the sum operator. This best accom-
modates the behavior of edge pixels during resampling and reprojection, as an SCM

sample falling only partially within the bounds of an IMG has a coverage coefficient
applied. To clarify this point, if the SCM sample should be 1.0, but only 20% of the
sample falls within the IMG, then the sample value will be 0.2. This does not cause
edge artifacts because the adjacent IMGs may be expected to cover the remainder of
the sample, and their contributions will sum to 1.0. Next we will see a case where this
assumption fails, so we must write the summed combination of all equirectangular
GLD inputs to a temporary file. We’ll call it DTM-E.tif.

1 scmtiff -p combine -o DTM-E.tif WAC_GLD100_*.tif

The polar GLD inputs of Figures 2.5(a) and 2.5(b) have a different projection so
they are not pixel-aligned with the equirectangular inputs. They overlap slightly and the
coverages sum to more than 1.0. Careful scrutiny with scmview, as in Figure 2.1, can
reveal issues like this, but usually they only became apparent as flaws in the output. To
resolve the issue, the polar inputs will be combined with the already-merged equatorial
inputs using the max operator.

But before that can be done, we must look ahead to the contribution of LDEM. As
apparent in Figure 2.5, GLD and LDEM overlap heavily. Due to the vastly different
processes that captured them, they have very different character at full resolution. In

CHAPTER 2. SCM PRE-PROCESSING 20

an effort to obscure any discontinuity that might emerge at their border, we interpolate
from one to the other between 78° and 79° degrees. This is accomplished using a
latitudinal fade during the initial conversion from IMG to SCM. Here, the northern
annulus of GLD data begins to fade out within 11° of the north pole at 90°, and fades
out completely within 12° of 90°.

1 scmtiff -p convert -n 426 -d 6 -N -9160,10770 -g 0 \

2 -P 90,12,11 WAC_GLD100_P900N0000.IMG

The opposite is true for the northern cap of LDEM. It begins to fade in within 11°
of 90° and fades in completely within 12° of 90°.

1 scmtiff -p convert -n 426 -d 6 -N -9160,10770 -g 0 \

2 -P 90,11,12 ldem_45n_100m.lbl

The situation at the south pole is the same, but centered upon −90°.

1 scmtiff -p convert -n 426 -d 6 -N -9160,10770 -g 0 \

2 -P -90,12,11 WAC_GLD100_P900S0000.IMG

3 scmtiff -p convert -n 426 -d 6 -N -9160,10770 -g 0 \

4 -P -90,11,12 ldem_45s_100m.lbl

When these SCM files are summed, no discontinuity will be apparent. We write this
combination of all polar data to a temporary file named DTM-P.tif.

1 scmtiff -p combine -o DTM-P.tif WAC_GLD100_P*.tif ldem_45*.tif

To complete the merger of the inputs, it remains only to combine the equirectangular
and polar data sets using the max operator. As suggested above, a slight overlap
between the two exists. It is too thin for interpolation, yet too thick to go unnoticed
when summed.

1 scmtiff -p combine -m max -o DTM-M.tif DTM-E.tif DTM-P.tif

And with that, the leaves of the SCM are in place. We mipmap, border, and finish
just as before to arrive at a usable data product.

1 scmtiff -p mipmap DTM-M.tif

2 scmtiff -p border -o DTM.tif DTM-M.tif

3 scmtiff -p finish DTM.tif

The six root pages of this SCM are shown in Figure 2.6. Note, in particular, the top
and bottom pages, both of which seamlessly combine interpolations of different data
sets as well as mergers of distinct projections.

CHAPTER 2. SCM PRE-PROCESSING 21

Figure 2.6: The six root pages of the lunar height map SCM.

A Normal Map

The height map generated in the previous section enables a great many visualization
tasks and modes, but the highest-quality real-time illumination of it requires the
derivation of a normal map. A normal map gives a surface vector for each height map
sample. To compute these vectors, both the radius of the sphere and the normalization
of the height must be known.

The moon has an average radius of 1,737,400 m. DTM.tif was prepared using
a normalization of (−9160,10,770). Thus, the interpretation of DTM.tif is that
a value of 0 maps onto the radius r0 = 1,737,400m− 9160m = 1,728,240m and
a value of 1 (represented in the 16-bit unsigned TIFF by 0xFFFF) maps onto r1 =

1,737,400m+10,770m = 1,748,170m. These are the values to provide to the normal
process.

1 scmtiff -p normal -o DTM-O.tif -R 1728240,1748170 DTM.tif

The output of the normal process is neither bordered nor finished, so it is written to
a temporary file. By convention, an unbordered normal map has the suffix O. Bordering
and finishing produce the usable normal map, given the suffix N.

CHAPTER 2. SCM PRE-PROCESSING 22

Figure 2.7: The six root pages of the lunar normal map SCM.

1 scmtiff -p border -o DTM-N.tif DTM-O.tif

2 scmtiff -p finish DTM-N.tif

The six root faces of this SCM are shown in Figure 2.7. In normal maps, positive
X-facing surfaces appear red, positive Y appears green, positive Z appears blue.

2.4 AUTOMATION

For input images larger than a gigapixel or two, the SCM conversion process will take
time. Because this is a multi-step process, it is convenient to automate it and allow
it to run in a batch-oriented mode. The most basic way to do so is to write a shell
script that issues each of the above command lines in turn. This approach can be
modularized using shell variables and loops, and works well in simple cases. However,
a more sophisticated approach uses the make utility to define the relationships between
the inputs and outputs of each step of the conversion and adaptively determine the
necessary order of operations automatically. The primary advantages to the use of make
in this context are that it correctly handles interrupted conversion processes without
expending redundant effort, and it intelligently exploits opportunities for process-level
parallelism.

CHAPTER 2. SCM PRE-PROCESSING 23

The following is an example Makefile that converts the equirectangular portion
of the WAC GLD100 data set to a bordered, finished height map, and derives from this
a bordered, finished normal map.

1 N = 426

2 D = 6

3 NAME = GLD-$(N)-$(D)

4

5 TIFS = WAC_GLD100_E300N0450_100M.tif \

6 WAC_GLD100_E300N1350_100M.tif \

7 WAC_GLD100_E300N2250_100M.tif \

8 WAC_GLD100_E300N3150_100M.tif \

9 WAC_GLD100_E300S0450_100M.tif \

10 WAC_GLD100_E300S1350_100M.tif \

11 WAC_GLD100_E300S2250_100M.tif \

12 WAC_GLD100_E300S3150_100M.tif

13

14 all: $(NAME)-N.tif

15

16 %.tif: %.IMG

17 scmtiff -p convert -n$(N) -d$(D) -N-9160,10770 -o $@ $<

18

19 $(NAME)-M.tif: $(TIFS)

20 scmtiff -p combine -o $@ $<

21 scmtiff -p mipmap $@

22

23 $(NAME).tif: $(NAME)-M.tif

24 scmtiff -p border -o$@ $<

25 scmtiff -p finish -t desc.txt $@

26

27 $(NAME)-O.tif: $(NAME).tif

28 scmtiff -p normal -R1728240,1748170 -o$@ $<

29

30 $(NAME)-N.tif: $(NAME)-O.tif

31 scmtiff -p border -o $@ $<

32 scmtiff -p finish -t desc.txt $@

The variables N and D set the page size and tree depth (lines 1–2), which are
carried throughout the process, making it easy to reprocess a single input at different
resolutions. The variable NAME is defined in terms of these values (line 3), as per the
SCM naming convention. Following this, the variable TIFS gives a list of constituent
SCM TIFF files generated by the initial conversion (lines 5–12).

The Makefile lists the TIFFs instead of the IMGs to enable the magic that happens
next, in the convert recipe (lines 16–17). This is an abstract definition of the process

CHAPTER 2. SCM PRE-PROCESSING 24

of converting an IMG to a TIFF, including its SCM parameters, description, and normal-
ization. When make is informed by the combine recipe that these TIFFs are required,
it knows how to convert them from IMGs.

The combine recipe (lines 19–21) produces a single output given the eight inputs,
and automatically executes the mipmap process on it in-place. By convention, this
combined, mipmapped output is identified by the suffix M.

The border recipe (lines 23–25) re-encodes this M file with bordered pages, and
finishes it, giving the height map output GLD-426-6.tif.

The normal recipes (lines 27–32) convert the finished height map to an intermediate
normal map with the suffix O, which is bordered and finished giving a normal map
GLD-426-6-N.tif.

In all cases, an output is defined in terms of its input and is annotated with the
process necessary to perform the conversion. The build is invoked with a single
command.

1 make

This command considers all recipes, compares each output with its required input,
and determines the minimum number of steps necessary to produce the output. Being
aware of all dependencies, it will optionally execute non-interfering processes in
parallel. To allow up to four simultaneous IMG conversions,

1 make -j4

This Makefile example is simplified from the complete planetary dataset example
of Section 2.3. It glosses over issues of blending and combining. A full Makefile
capable of performing the complete lunar map conversion is given in Appendix B.

SCM RENDER LIBRARY

The SCM renderer is implemented as a small C++ library that may be embedded within
any OPENGL host application.

3.1 API

The API provides three primary classes: a cache class that manages SCM data and
implements demand-paging with a least-recently-used ejection policy, a model class
that renders adaptive spherical geometry to which the cached imagery is applied, and a
label class that optionally annotates the sphere and its imagery. An application that
renders SCM data will require at least one cache object and one model object.

The document lists the application API for each class, and includes only those
methods of use to rendering applications. These classes do have other public methods,
though they are generally reserved for intercommunication.

class scm cache has the following public methods.

• scm cache(int size)

Construct a new cache object with the given maximum cache size (in pages).

• int add file(const std::string& scm)

Add the named SCM TIFF file to the cache an integer descriptor for that file. A
cache supports an arbitrary number of simultaneous files, and an application will
usually have exactly one cache object per OPENGL context.

• void update(int time)

Update the state of the cache using the given time value. To keep a cache and
model in sync, and to properly manage page aging, this argument should given
the value returned by sph model::tick.

• void draw()

Draw the entire contents of the cache in thumbnail to a 2D on-screen rectangle.

class scm model has the following public methods.

• scm model(scm cache& cache, const std::string& vert,
const std::string& frag,
int mesh, double r0, double r1)

Construct a new adaptive spherical model that renders SCM data in cache using
the vertex and fragment shaders vert and frag. The tessellation density is given
by mesh and the maximum expected range of displaced radii are r0 and r1.

25

CHAPTER 3. SCM RENDER LIBRARY 26

scm-basic.vert . . . For static spheres.
scm-zoom.vert . . . For zoomable panoramic SCMs.

scm-displace.vert . . . Displacement-mapped planetary SCMs.

Table 3.1: SCM viewer vertex shaders

• int tick()

Advance and return the current model time. This value is passed to scm cache::update
and helps manage page age and latent-data fade-in.

• void prep(const double *P, const double *V, int w, int h)

Pre-process the model for rendering to a w×h buffer. P gives the current 4×4
projection matrix and V gives the 4×4 model-view matrix. This function iterates
over the SCM hierarchy and determines which pages are in view (given these
transformations) and at what resolution they appear (given this buffer size).

• void draw(const double *P, const double *V, const int *vv, int vc,
const int *fv, int fc,
const int *pv, int pc)

Draw the model using projection matrix P and model-view matrix V. The arrays
vv, fv, and pv give file descriptors (as returned by scm cache::add file) to be sup-
plied to the vertex shader, the fragment shader, and the pre-loader, respectively.
The values vc, fc, and pc give the length of each of these arrays.

3.2 SCM PATH

This library has just one system-level configuration parameter:
SCMPATH is a shell environment variable akin to the bash executable path. It lists

directories where SCM TIFF files may be found. If the application requests that the
renderer load a file, but the renderer cannot find that file, then it will search this list of
directories. Set this variable in the shell resource file, as need be, separated by colons.
For example,

1 export SCMPATH=/share/scm:$HOME/data/scm:.

For cluster-driven display systems, try to replicate all SCM TIFFs to local directories
on all rendering nodes. This will perform better than data files stored on network
shares.

CHAPTER 3. SCM RENDER LIBRARY 27

scm-basic.frag . . . Basic application of SCM color.
scm-blend.vert . . . Blending and animation of SCM sequences.

scm-colormap.vert . . . False color mapping of single-channel SCMs.
scm-lomsee.vert . . . Lommel-Seeliger shading with color and normal.

Table 3.2: SCM viewer fragment shaders

SCM EXAMPLE APPLICATIONS

Two example SCM rendering applications have been implemented using the Thumb
framework, which enables cross-platform portability and scalability from laptops to
cluster-driven virtual reality environments. The first of these applications, PANOVIEW,
renders SCMfiles inside-out and is suitable for high-resolution spherical panorama
rendering. The second, ORBITER, renders SCM files outside-in and is suitable for
planetary rendering. While the previous chapter on SCM handling applies to any
embedding of the SCM renderer, this chapter specifically describes the configuration
and usage of PANOVIEW and ORBITER.

4.1 SPHERE DEFINITION FILE

The sphere definition is an XML file that organizes SCM images into visualization and
gathers all of the information required by the renderer.

As Thumb-based applications, PANOVIEW and ORBITER must be able to find
these XML files. They appear in the Thumb data hierarchy like any other configuration
file. This means they may be placed in a data directory rooted at the current directory,
or in the ~/.thumb hierarchy, or in a data hierarchy given by the THUMB_RO_PATH

environment variable. Sphere definition files need not be stored along side the SCM

TIFF files that they reference, as the SCMPATH environment variable still defines the
location of SCM TIFFs.

Basic Stereo Panorama

Here is Bluebonnet-0.xml, a basic stereoscopic panorama definition.

1 <?xml version="1.0"?>

2 <sphere vert="glsl/scm-zoom.vert"

3 frag="glsl/scm-basic.frag"

4 mesh="16" radius="6">

5 <scm channel="0" file="Bluebonnet-0-L-512-4.tif" />

6 <scm channel="1" file="Bluebonnet-0-R-512-4.tif" />

7 </sphere>

The file begins with an XML header and contains a single root sphere element with
optional attributes and one sub-element for each SCM image.

The vert and frag attributes (lines 2–3) give the vertex and fragment shaders to be
used by the renderer, named relative to the root of the Thumb data hierarchy. Tables 3.1
and 3.2 list the available shaders. This example is a single high-resolution stereoscopic
panorama. It should be zoomable, yet it requires no special pixel processing, so
the scm-zoom.vert vertex shader and the scm-basic.frag fragment shader are
specified.

28

CHAPTER 4. SCM EXAMPLE APPLICATIONS 29

The mesh attribute (line 4) of the sphere element determines the tessellation density
of the geometry mesh used to render each page of data. The example value, 16,
indicates that each page of the sphere will be rendered using a 16×16 grid of polygons.
This is the default, and is an appropriate value for panoramas.

The radius attribute (line 4) determines the radius of the spherical geometry to
which the SCM imagery is applied. This value is given in meters, and is most significant
in determining the apparent scale of the sphere in a VR display environment.

The scm sub-elements (lines 5–6) give the SCM file names. The channel attributes
indicate which stereoscopic channel each SCM provides.

Multi-image Panorama

This example, Taliesin-Path.xml, is a more complex stereoscopic panorama giving
a series of images for each channel. The scm elements are wrapped in frame groups
and organized into a sequence. The frag attribute of the sphere element specifies the
scm-blend.frag fragment shader, which fades smoothly from one frame to the next.
The result is a panoramic virtual reality walk down a garden path at Taliesin.

1 <?xml version="1.0"?>

2 <sphere vert="glsl/sph-zoomer.vert"

3 frag="glsl/sph-blend.frag">

4 <frame>

5 <scm channel="0" file="Taliesin-Path-A-L-512-3.tif" />

6 <scm channel="1" file="Taliesin-Path-A-R-512-3.tif" />

7 </frame>

8 <frame>

9 <scm channel="0" file="Taliesin-Path-B-L-512-3.tif" />

10 <scm channel="1" file="Taliesin-Path-B-R-512-3.tif" />

11 </frame>

12 <frame>

13 <scm channel="0" file="Taliesin-Path-C-L-512-3.tif" />

14 <scm channel="1" file="Taliesin-Path-C-R-512-3.tif" />

15 </frame>

16 <frame>

17 <scm channel="0" file="Taliesin-Path-D-L-512-3.tif" />

18 <scm channel="1" file="Taliesin-Path-D-R-512-3.tif" />

19 </frame>

20 <frame>

21 <scm channel="0" file="Taliesin-Path-E-L-512-3.tif" />

22 <scm channel="1" file="Taliesin-Path-E-R-512-3.tif" />

23 </frame>

24 <frame>

25 <scm channel="0" file="Taliesin-Path-F-L-512-3.tif" />

26 <scm channel="1" file="Taliesin-Path-F-R-512-3.tif" />

CHAPTER 4. SCM EXAMPLE APPLICATIONS 30

27 </frame>

28 <frame>

29 <scm channel="0" file="Taliesin-Path-G-L-512-3.tif" />

30 <scm channel="1" file="Taliesin-Path-G-R-512-3.tif" />

31 </frame>

32 <frame>

33 <scm channel="0" file="Taliesin-Path-H-L-512-3.tif" />

34 <scm channel="1" file="Taliesin-Path-H-R-512-3.tif" />

35 </frame>

36 </sphere>

Displacement-mapped Illuminated Planet

The following example brings together multiple disparate data sets to produce a
displacement-mapped sphere with real-time illumination and diffuse color, suitable for
viewing with orbiter. It demonstrates a number of additional attributes.

1 <?xml version="1.0"?>

2 <sphere mesh="128" r0="0.994728" r1="1.0062" radius="20.0"

3 vert="glsl/scm-displace.vert"

4 frag="glsl/scm-lomsee.frag">

5 <scm shader="vert" file="DTM-426-6.tif" />

6 <scm shader="frag" file="DTM-426-6-N.tif" />

7 <scm shader="frag" file="clementine-512-3.tif" />

8 </sphere>

The mesh resolution has been increased to 128 from its default 16. This is because
a height map SCM is applied to the sphere geometry by the scm-displace.vert

vertex shader. The geometry must have a dense tessellation to allow a close mapping
from height map samples to 3D vertices. Related to this, the r0 and r1 attributes give
the magnitude of the displacement applied to that geometry, relative to a radius of
1. These are the same values used when generating the normal map in Section 2.3.
r0= 1,728,240/1,737,300 and r1= 1,748,170/1,737,400.

The scm elements have an additional attribute, shader, which allows an SCM to
be targeted toward a specific shader. In this case, the scm-displace.vert shader
is granted access to the height map. The default shader target for scm elements
is “frag,” which is given explicitly here for symmetry. This rendering uses the
scm-lomsee.frag fragment shader which requires two images, separately applied to
the per-fragment normal and diffuse color coefficients of the Lommel-Seeliger lighting
model. Order matters here, and this shader expects the normal map to be listed first.

It’s worth noting that not all of the data sets used in this visualization have the same
page size and depth. Equality in not required, and the adaptive renderer will defer to
the lowest page size to ensure that an appropriate level of detail is achieved for all

CHAPTER 4. SCM EXAMPLE APPLICATIONS 31

data. Likewise, the deepest SCM depth will be fully utilized, and shallower SCMs will
undergo linear magnification filtering to match.

4.2 PANOVIEW USAGE

PANOVIEW and ORBITER are configured and run like any other Thumb application.
The following keyboard commands are defined.

F1 Toggle the sphere definition file selection dialog. This dialog allows the user
to navigate the Thumb data hierarchy and select a visualization definition for
viewing.

F2 Toggle the cache visualization overlay. This allows the set of all resident pages
to be viewed in thumbnail.

F3 Toggle the model label, if any.

F4 Toggle the wire-frame view of the sphere geometry.

In addition, there is one option in the Thumb configuration file conf.xml that
impacts the behavior and performance of these applications:

1 <option name="scm_cache_size">128</option>

This option gives the value passed to the scm cache constructor, selecting the
maximum number of pages that may be loaded at any given moment. A 512× 512
page of RGB data consumes 1 MB of VRAM and this cache size option should be set
accordingly. A larger value gives better performance, but too large a value will result
in catastrophically bad performance. Knowledge of your hardare’s available VRAM

will help to determine the optimal value.

4.3 TROUBLESHOOTING

This is a list of issues to be aware of, should trouble arise when configuring or using
PANOVIEW and ORBITER.

• If the panorama definition XML files are not visible in the sphere definition
file selector, then be sure they are located within the Thumb data hierarchy,
or add their location to the Thumb data hierarchy by including the path in the
THUMB_RO_PATH environment variable.

• If the panorama definition loads but does not display an image, be sure the path
to the SCM TIFF files appears in the SCMPATH environment variable.

• If a multi-image panorama jumps from one panorama to the next instead of
fading, be sure the blend fragment program is referenced by the definition.

CHAPTER 4. SCM EXAMPLE APPLICATIONS 32

• If performance is sluggish, be sure that panorama image files are not being ac-
cessed from a network share, and that the conf.xml setting of scm_cache_size
is not too high.

INTEGER BINARY LOGARITHM

The following C Language function computes the 64-bit integer binary logarithm in
O(logn) operations. It takes and returns a signed value, instead of unsigned, as this is
the most appropriate C type for SCM page indices.

1 static inline long long log2i(long long n)

2 {

3 unsigned long long v = (unsigned long long) n;

4 unsigned long long r;

5 unsigned long long s;

6

7 r = (v > 0xFFFFFFFFULL) << 5; v >>= r;

8 s = (v > 0xFFFFULL) << 4; v >>= s; r |= s;

9 s = (v > 0xFFULL) << 3; v >>= s; r |= s;

10 s = (v > 0xFULL) << 2; v >>= s; r |= s;

11 s = (v > 0x3ULL) << 1; v >>= s; r |= s;

12

13 return (long long) (r | (v >> 1));

14 }

33

LRO DTM MAKEFILE

1 N=426

2 D=6

3

4 NAME = DTM-$(N)-$(D)

5 FORM = -n $(N) -d $(D)

6 NORM = -N -9160,10770 -g 0

7 RADI = -R 1728240,1748170

8 TEXT = -t desc.txt

9

10 GLDE =\

11 WAC_GLD100_E300N0450_100M.tif \

12 WAC_GLD100_E300N1350_100M.tif \

13 WAC_GLD100_E300N2250_100M.tif \

14 WAC_GLD100_E300N3150_100M.tif \

15 WAC_GLD100_E300S0450_100M.tif \

16 WAC_GLD100_E300S1350_100M.tif \

17 WAC_GLD100_E300S2250_100M.tif \

18 WAC_GLD100_E300S3150_100M.tif

19 GLDP =\

20 WAC_GLD100_P900N0000_100M.tif \

21 WAC_GLD100_P900S0000_100M.tif

22 LOLA =\

23 ldem_45n_100m.tif \

24 ldem_45s_100m.tif

25

26 # Convert a raw normal map to a bordered and finished normal map.

27

28 $(NAME)-N.tif: $(NAME)-O.tif

29 scmtiff -T -p border -o $@ $<

30 scmtiff -T -p finish $(TEXT) $@

31

32 # Convert a height map into a raw normal map.

33

34 $(NAME)-O.tif: $(NAME).tif

35 scmtiff -T -p normal $(RADI) -o $@ $<

36

37 # Border and finish.

38

39 $(NAME).tif: $(NAME)-M.tif

40 scmtiff -T -p border -o $@ $<

41 scmtiff -T -p finish $(TEXT) $@

42

43 # Combine the two projections and mipmap the result.

34

APPENDIX B. LRO DTM MAKEFILE 35

44

45 $(NAME)-M.tif: $(NAME)-E.tif $(NAME)-P.tif

46 scmtiff -T -p combine -m avg -o $@ $^

47 scmtiff -T -p mipmap $@

48

49 # Sum the equirectangular projections.

50

51 $(NAME)-E.tif: $(GLDE)

52 scmtiff -T -p combine -m max -o $@ $^

53

54 # Sum the polar projections.

55

56 $(NAME)-P.tif: $(GLDP) $(LOLA)

57 scmtiff -T -p combine -o $@ $^

58

59 # Convert all PDS files to TIFF.

60

61 WAC_GLD100_E%.tif: WAC_GLD100_E%.IMG

62 scmtiff -T -p convert $(FORM) $(NORM) -o $@ $<

63

64 WAC_GLD100_P900N0000_100M.tif: WAC_GLD100_P900N0000_100M.IMG

65 scmtiff -T -p convert $(FORM) $(NORM) -o $@ -P 90,12,11 $<

66

67 WAC_GLD100_P900S0000_100M.tif: WAC_GLD100_P900S0000_100M.IMG

68 scmtiff -T -p convert $(FORM) $(NORM) -o $@ -P -90,12,11 $<

69

70 ldem_45n_100m.tif: ldem_45n_100m.lbl

71 scmtiff -T -p convert $(FORM) $(NORM) -o $@ -P 90,11,12 $<

72

73 ldem_45s_100m.tif: ldem_45s_100m.lbl

74 scmtiff -T -p convert $(FORM) $(NORM) -o $@ -P -90,11,12 $<

75

76 clean:

77 rm -f $(NAME).tif $(GLDE) $(GLDP) $(LOLA)

NOTES

CHAPTER 1 SPHERICAL CUBE MAP

1. In an unexpected result, as the resolution of an SCM page tends toward infinity, the
ratio of the solid angle of a center pixel (the largest pixel) to the solid angle of an edge
pixel (the smallest pixel) tends toward exactly

√
2/2.

2. Compounding the surprise, the ratio of the length of the shortest edge to the length
of the longest edge also tends toward

√
2/2.

CHAPTER 2 SCM PRE-PROCESSING

1. Yes, this process is dumb enough to overwrite a source data file that already has the
.tif extension.
2. The replicated borders provide only a single pixel of context. This enables linear
magnification filtering, but does not enable anisotropic filtering.
3. http://wms.lroc.asu.edu/lroc/global_product/100_mpp_DEM

4. http://pds-geosciences.wustl.edu/missions/lro/lola.htm

5. The real limit is the total depth of all simultaneously loaded data sets, which must
be less than GL MAX TEXTURE IMAGE UNITS. On a 2012-era Mac, this limit is
16. On a 2012-era NVIDIA-equipped Linux or Windows PC, this limit is 56 or 64.

36

http://wms.lroc.asu.edu/lroc/global_product/100_mpp_DEM
http://pds-geosciences.wustl.edu/missions/lro/lola.htm

	Contents
	1 Spherical Cube Map
	1.1 Spherical sampling
	1.2 Paging

	2 scm Pre-processing
	2.1 SCMTIFF
	Convert
	Combine
	Mipmap
	Border
	Finish
	Normal
	Sample

	2.2 SCMVIEW
	2.3 Examples
	A Basic Panorama
	A Merged Planetary Dataset
	A Normal Map

	2.4 Automation

	3 scm Render Library
	3.1 api
	3.2 scm path

	4 scm Example Applications
	4.1 Sphere Definition File
	Basic Stereo Panorama
	Multi-image Panorama
	Displacement-mapped Illuminated Planet

	4.2 Panoview Usage
	4.3 Troubleshooting

	A Integer Binary Logarithm
	B LRO DTM Makefile
	C Notes

