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1 Introduction
The objective of this document is to compartmentalize the
methods for computating normalized associated Legendre
functions (ALFs): to separate out each of the constituent
parts of the ALF computation distinguishing one applica-
tion from another, and to describe and demonstrate each
concept separately. In so doing, this work defines a set of
building blocks from which a desired ALF recursion for a
specific application may be constructed. These building
blocks include the choice of normalization, the selection
of order-wise versus degree-wise recurrence, the optional
inclusion of the Condon-Shortley phase, and application
of normalized ALFs to either the real or complex spherical
harmonic transform.

P̄m
ℓ (x) = qm

ℓ Pm
ℓ (x). (1)

1

Y m
ℓ (θ ,ϕ) = P̄m

ℓ (cosθ)eimϕ . (2)
colatitude 0 ≤ θ ≤ π and longitude 0 ≤ ϕ ≤ 2π

ALFs satisfy the orthogonality relationship∫ 1

−1
P̄m
ℓ (x) P̄m

ℓ′ (x)dx =
2

2ℓ+1
(ℓ+m)!
(ℓ−m)!

δℓℓ′

where δℓℓ′ = 1 when ℓ = ℓ′ or 0 otherwise. The complex
spherical harmonics satisfy2

∫
S

Y m∗
ℓ (θ ,ϕ)Y m′

ℓ′ (θ ,ϕ) sinθ dθ dϕ =

4π
2ℓ+1

(ℓ+m)!
(ℓ−m)!

δℓℓ′δmm′

1To resolve any confusion, the bar P̄m
ℓ used here denotes normal-

ization, and the asterisk Y m∗
ℓ denotes complex conjugation. Some

authors denote normalizion with a tilde P̃m
ℓ , and complex conjuga-

tion with an overline Y m
ℓ .

2A more terse presentation might display this integral as∫
Ω

Y m∗
ℓ (ω)Y m′

ℓ′ (ω)dω

However, the verbose presentation is chosen for consistency, as Y m
ℓ

is more clearly defined in terms of θ and ϕ .

1.1 Normalization
1.1.1 Orthonormalization
For the complex basis, this takes the form

qm
ℓ =

√
(2ℓ+1)

4π
(ℓ−m)!
(ℓ+m)!

. (3)

The orthonormal ALFs satisfy∫ 1

−1
P̄m
ℓ (x) P̄m

ℓ′ (x)dx =
1

2π
δℓℓ′ ,

and spherical harmonic orthogonality has unit norm,∫
S

Y m∗
ℓ (θ ,ϕ)Y m′

ℓ′ (θ ,ϕ) sinθ dθ dϕ = δℓℓ′δmm′ .

1.1.2 Geodesy 4π normalization
The field of geodesy commonly uses what is known as the
“4π normalization,”

qm
ℓ =

√
(2ℓ+1)

(ℓ−m)!
(ℓ+m)!

. (4)

4π-normalized ALFs satisfy the orthogonality relation∫ 1

−1
P̄m
ℓ (x) P̄m

ℓ′ (x)dx = 2δℓℓ′ ,

and the complex spherical harmonics satisfy∫
S

Y m∗
ℓ (θ ,ϕ)Y m′

ℓ′ (θ ,ϕ) sinθ dθ dϕ = 4π δℓℓ′δmm′ ,

from whence comes the name.

1.1.3 Schmidt seminormalization
The magnetics and quantum mechanisms communities
use the Schmidt seminormalization,

qm
ℓ =

√
(ℓ−m)!
(ℓ+m)!

. (5)
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Seminormalized ALFs satisfy the orthogonality relation∫ 1

−1
P̄m
ℓ (x) P̄m

ℓ′ (x)dx =
1

2ℓ+1
δℓℓ′ ,

and the spherical harmonic orthogonality satisfies∫
S

Y m∗
ℓ (θ ,ϕ)Y m′

ℓ′ (θ ,ϕ) sinθ dθ dϕ =
4π

2ℓ+1
δℓℓ′δmm′ .

1.2 Spherical Harmonics
The real form of the spherical harmonic basis uses a
slightly modified normalization, introducing a factor of√

2 where m ̸= 0.

Yℓm(θ ,ϕ) =


√

2 P̄+m
ℓ (cosθ) cos(mϕ) if m > 0

P̄m
ℓ (cosθ) if m = 0

√
2 P̄−m

ℓ (cosθ) sin(−mϕ) if m < 0

(6)

2 ℓ-varying ALF Recurrences
We begin with the ℓ-varying recursive definition of the as-
sociated Legendre functions and their first derivative. On
the diagonal, where degree ℓ equals order m, the associ-
ated Legendre functions are

Pℓ
ℓ (x) = (2ℓ−1)!!(1− x2)ℓ/2. (7)

Moving one step up in degree,

Pℓ
ℓ+1(x) = x(2ℓ+1)Pℓ

ℓ (x). (8)

Elsewhere, the ALFs fit the following three-term recur-
rence [1] (8.5.3), [3] (2.5.20),

(ℓ−m)Pm
ℓ (x) = x(2ℓ−1)Pm

ℓ−1(x)− (ℓ+m−1)Pm
ℓ−2(x) (9)

See Figure 1 for a graphical depiction of the relationship
between these three equations.

ALF derivatives are defined in terms of these values
[1] (8.5.4),

(x2 −1)
dPm

ℓ

dx
(x) = xℓPℓ

ℓ (x)− (ℓ−m)Pm
ℓ−1 (10)

The derivative on the diagonal follows from the definition
of the trianglular derivative, given that Pℓ

ℓ−1 = 0.

(x2 −1)
dPℓ

ℓ

dx
(x) = xℓPℓ

ℓ (x) (11)

In practice, (7) is not as useful as the recurrence

P0
0 (x) = 1

Pℓ
ℓ (x) =

√
1− x2 (2ℓ−1)Pℓ−1

ℓ−1 (x) (12)

Figure 1: The dependancies of the ℓ-varying recurrence
giving Pm

ℓ . Darker elements correspond to (7), lighter to
(8), and white to (9).

and (8) may be omitted by stipulating Pℓ
ℓ−1 = 0 in (9).

In general, ℓ-varying ALF calculations take the form
of a pair of recurrences, one tracing the diagonal, and
another filling the triangular region above. This set of
equations forms the core of the discussion of this section.

P0
0 (x) = q0

0

Pℓ
ℓ (x) =

√
1− x2 aℓ Pℓ−1

ℓ−1 (x)

Pm
ℓ (x) = xbm

ℓ Pm
ℓ−1(x)− cm

ℓ Pm
ℓ−2(x)

dPm
ℓ

dx
(x) =

xℓ
x2 −1

Pm
ℓ (x)− 1

x2 −1
dm
ℓ Pm

ℓ−1(x) (13)

where the unnormalized recurrence factors are

aℓ = 2ℓ−1 bm
ℓ =

2ℓ−1
ℓ−m

cm
ℓ =

ℓ+m−1
ℓ−m

dm
ℓ = ℓ+m. (14)

2.1 ℓ-varying Normalized ALFs
Normalization factors vary from field to field following the
demands of each application, but they universally include
factorials of the degree ℓ and order m. For example, we
will presently examine the geodetic normalization,

qm
ℓ =

√
(2ℓ+1)

(ℓ−m)!
(ℓ+m)!

.

Given machine arithmetic, these factorials are numer-
ically intractable for non-small ℓ and m, and thus the
normalization factor as a whole cannot be separately com-
puted. Instead, its computation must be integrated into
the ALF recurrences themselves.

Such recurrences do fit the general form of (13), but the
factors aℓ, bm

ℓ , cm
ℓ , and dm

ℓ are modified. Given an arbitrary



normalization qm
ℓ , we wish to solve for these new factors

āℓ, b̄m
ℓ , c̄m

ℓ , and d̄m
ℓ . We begin with the generalized form of

(13) with normalization coefficients inserted,

qℓℓP
ℓ
ℓ = (. . .) āℓ qℓ−1

ℓ−1Pℓ−1
ℓ−1 (x)

qm
ℓ Pm

ℓ (x) = (. . .) b̄m
ℓ qm

ℓ−1Pm
ℓ−1(x)− c̄m

ℓ qm
ℓ−2(x)P

m
ℓ−2(x)

qm
ℓ

dPm
ℓ

dx
(x) = (. . .)qm

ℓ Pm
ℓ (x)− (. . .) d̄m

ℓ qm
ℓ−1Pm

ℓ−1(x)

Intuitively, the Pm
ℓ values on the right hand side of each

equation arrive already normalized, with their normaliza-
tion coefficients qm

ℓ attached. We must undo these nor-
malizations and apply the unnormalized recurrence fac-
tors (14). Ultimately, we’ll also need to apply the nor-
malization coefficient qm

ℓ on the left hand side, and it is
advantageous to include it in each of the recurrence terms
immediately. The first term of the derivative has the
same normalization coefficient as the result, so it requires
no special consideration. Arithmetically,

āℓ = (2ℓ−1)
qℓℓ

qℓ−1
ℓ−1

, (15)

b̄m
ℓ =

(
2ℓ−1
ℓ−m

)
qm
ℓ

qm
ℓ−1

, (16)

c̄m
ℓ =

(
ℓ+m−1
ℓ−m

)
qm
ℓ

qm
ℓ−2

, (17)

d̄m
ℓ = (ℓ+m)

qm
ℓ

qm
ℓ−1

. (18)

These evade numerical intractibility because the facto-
rials in the numerators cancel those in the denominators.
We’ll see this happen in detail in the next section.

2.2 Orthonormalization
We will now derive the four factors for the ℓ-varying ALF
recurrence for the complex form of the orthonormaliza-
tion. This presentation strives for clarity and complete-
ness, as it establishes a general pattern for the derivation
of recurrence factors applicable to any ℓ-varying normal-
ization. This derivation is the first of several, and only
this first one is so verbose.

2.2.1 Base case
The base case of the recurrence follows straightforwardly
from the evaluation of (3) for ℓ= m = 0.

P̄0
0 (x) =

√
1

4π
, (19)

2.2.2 Diagonal recurrence
On the diagonal, where ℓ= m, (3) reduces to

qℓℓ =

√
2ℓ+1

4π(2ℓ)!
.

Substituting this into (15),

āℓ = (2ℓ−1)

√
2ℓ+1

4π(2ℓ)!√
2ℓ−1

4π(2ℓ−2)!

Cancelling 1/
√

4π, flipping the denominator, and concate-
nating the radicals,

āℓ = (2ℓ−1)

√
(2ℓ+1)
(2ℓ)!

(2ℓ−2)!
(2ℓ−1)

.

Bringing like terms together,

āℓ = (2ℓ−1)

√
(2ℓ+1)
(2ℓ−1)

(2ℓ−2)!
(2ℓ)!

.

Here, the factorials cancel. This is the key advantage of
this formulation, allowing normalized ALFs to be com-
puted for large ℓ.

āℓ = (2ℓ−1)

√
(2ℓ+1)
(2ℓ−1)

1
(2ℓ)(2ℓ−1)

.

Finally, all occurrances of 2ℓ−1 cancel and we’re left with
the simplified recurrence factor, ready to be dropped into
(13) to compute orthonormalized ALFs on the diagonal.

āℓ =

√
2ℓ+1

2ℓ
(20)

2.2.3 Triangle recurrence, first term
Now on to the recurrence giving the triangular region
above the diagonal. Substituting (3) into (16),

b̄m
ℓ =

2ℓ−1
ℓ−m

√
(2ℓ+1)

4π
(ℓ−m)!
(ℓ+m)!√

(2ℓ−1)
4π

(ℓ−m−1)!
(ℓ+m−1)!

.

Cancelling, flipping, and concatenating,

b̄m
ℓ =

2ℓ−1
ℓ−m

√
(2ℓ+1)

1
(ℓ−m)!
(ℓ+m)!

1
(2ℓ−1)

(ℓ+m−1)!
(ℓ−m−1)!

.



Bringing like terms together,

b̄m
ℓ =

√
(ℓ−m)!

(ℓ−m−1)!
(ℓ+m−1)!
(ℓ+m)!

(2ℓ−1)√
2ℓ−1

√
2ℓ+1

(ℓ−m)
.

Cancelling the factorials,

b̄m
ℓ =

√
ℓ−m
ℓ+m

√
2ℓ−1

1

√
2ℓ+1

(ℓ−m)
.

Mopping up the cancellation that arrises as a result, we
arrive at the simplified recurrence factor for the first term.

b̄m
ℓ =

√
(2ℓ−1)
(ℓ−m)

(2ℓ+1)
(ℓ+m)

(21)

2.2.4 Triangle recurrence, second term
We proceed similarly with the second term of the trian-
gular recurrence by substituting (3) into (17)

c̄m
ℓ =

ℓ+m−1
ℓ−m

√
(2ℓ+1)

4π
(ℓ−m)!
(ℓ+m)!√

(2ℓ−3)
4π

(ℓ−m−2)!
(ℓ+m−2)!

.

Cancelling, flipping, and concatenating,

c̄m
ℓ =

ℓ+m−1
ℓ−m

√
(2ℓ+1)

1
(ℓ−m)!
(ℓ+m)!

1
(2ℓ−3)

(ℓ+m−2)!
(ℓ−m−2)!

Bringing like terms together,

c̄m
ℓ =

ℓ+m−1
ℓ−m

√
(2ℓ+1)
(2ℓ−3)

(ℓ−m)!
(ℓ−m−2)!

(ℓ+m−2)!
(ℓ+m)!

.

Again the factorials evaporate, though they leave behind
a bit more residue than last time. Having eliminated the
factorials from both terms of the triangular recursion, it
becomes possible to compute ALFs for large ℓ and m

c̄m
ℓ =

ℓ+m−1
ℓ−m

√
(2ℓ+1)
(2ℓ−3)

(ℓ−m)

(ℓ+m)

(ℓ−m−1)
(ℓ+m−1)

.

Bringing like terms together for another round of cancel-
lation,

c̄m
ℓ =

√
(2ℓ+1)
(2ℓ−3)

(ℓ−m−1)
(ℓ+m)

√
ℓ−m

(ℓ−m)

(ℓ+m−1)√
ℓ+m−1

.

We finally arrive at the simplified recurrence factor for
the second term.

c̄m
ℓ =

√
(2ℓ+1)
(2ℓ−3)

(ℓ+m−1)
(ℓ+m)

(ℓ−m−1)
(ℓ−m)

. (22)

2.2.5 Derivative
The normalization factor for the derivative is derived by
substituting (3) into (18).

d̄m
ℓ = (ℓ+m)

√
(2ℓ+1)

4π
(ℓ−m)!
(ℓ+m)!√

(2ℓ−1)
4π

(ℓ−m−1)!
(ℓ+m−1)!

.

Cancelling, flipping, and concatenating,

d̄m
ℓ = (ℓ+m)

√
(2ℓ+1)

1
(ℓ−m)!
(ℓ+m)!

1
(2ℓ−1)

(ℓ+m−1)!
(ℓ−m−1)!

.

Eliminating the factorials,

d̄m
ℓ = (ℓ+m)

√
(2ℓ+1)
(2ℓ−1)

(ℓ−m)

(ℓ+m)
.

Canceling and reorganizing,

d̄m
ℓ =

√
(ℓ2 −m2)

(2ℓ+1)
(2ℓ−1)

, (23)

2.2.6 Summary
In summary, orthonormalized ALFs and first derivatives
for the complex spherical harmonic transform may be
computed with machine arithmetic by applying the ℓ-
varying recurrence relation (13) with recurrence factors

āℓ =

√
2ℓ+1

2ℓ

b̄m
ℓ =

√
(2ℓ−1)
(ℓ−m)

(2ℓ+1)
(ℓ+m)

c̄m
ℓ =

√
(2ℓ+1)
(2ℓ−3)

(ℓ+m−1)
(ℓ+m)

(ℓ−m−1)
(ℓ−m)

d̄m
ℓ =

√
(ℓ2 −m2)

(2ℓ+1)
(2ℓ−1)

(24)

with P̄0
0 (x) =

√
1/4π.

2.3 Geodesy 4π Normalization
The geodesy 4π normalization (4) differs from the or-
thonormalization (3) (perhaps counterintuitively) by the
removal of the constant 4π from the denominator of the
radical. The impact of this on the recurrence is slight,
as this constant never appears in a numerator of (15–18)
without also appearing in a denominator, cancelling out
of each of the recursion factors immediately.



The one significant difference is the removal of the con-
stant from the base case. Evaluating the 4π normalization
coefficient (4) at ℓ= m = 0,

P̄0
0 (x) = 1. (25)

Otherwise, the ℓ-varying 4π recurrence factors are the
same as the orthornormalized factors (24). In this con-
text, we may note that equations (20–23) are confirmed
by Equations (12), (13), and (16) of Holmes and Feather-
stone [4]. Their base case will follow from our discussion
of the real spherical harmonic transform in Section 3.4.

2.4 Seminormalization
The seminormalization (5) retains the factorial fraction in
common with the ortho- and 4π normalizations, but does
away with the non-constant factor 2ℓ+ 1. This change
does not cancel out as smoothly as the orthonormaliza-
tion’s 1/

√
4π, and the derivation of the seminormalized

recurrence factors must work through the substitution
of (5) into (15–18). We’ll forego the detailed presenta-
tion of this derivation, as the process mirrors that of Sec-
tion 2.2. The resulting factors for substitution into (13)
are

āℓ =

√
2ℓ−1

2ℓ

b̄m
ℓ =

2ℓ−1√
ℓ2 −m2

c̄m
ℓ =

√
(ℓ+m−1)
(ℓ+m)

(ℓ−m−1)
(ℓ−m)

d̄m
ℓ =

ℓ+m√
(ℓ+m)(ℓ−m+1)

(26)

with P̄0
0 (x) = 1.

3 m-varying ALF Recurrences
In some circumstances it can be advantageous to organize
a spherical harmonic transform implementation to work
by degree instead of by order. This may be due to the
mapping of the transform onto a parallel platform, or the
subsetting of the active ALFs to fit within limited memory
resources.

Whatever the motivation, the ALFs have an equally sta-
ble m-varying formulation based upon another three-term
recurrence. The ALFs along the diagonal are computed
as before, using (12), restated here for reference, with the
variable substituted for clarity.

P0
0 (x) = 1

Pm
m (x) =

√
1− x2 (2m−1)Pm−1

m−1 (x) (27)

Figure 2: The dependancies of the m-varying recurrence
giving Pm

ℓ . Dark elements correspond to (7) and white to
(28).

We’ll forego mirroring (8) and separately formulating
Pm−1

m this time, since the definition follows trivially from
the stipulation of Pm+1

m = 0 in the triangular recurrence,
from Edmonds [3] (2.5.24),√

1− x2(ℓ+m+1)(ℓ−m)Pm
ℓ (x) =

2(m+1)xPm+1
ℓ (x)−

√
1− x2Pm+2

ℓ (x). (28)

The m-varying derivative, from Abramowitz [1] (8.5.2),

dPm
ℓ

dx
(x) =

(ℓ+m)(ℓ−m+1)√
x2 −1

Pm−1
ℓ (x)− xm

x2 −1
Pm
ℓ (x). (29)

See Figure 2 for a graphical depiction of the relationship
between these definitions.

P0
0 (x) = q0

0

Pm
m (x) =

√
1− x2 am Pm−1

m−1 (x)

Pm
ℓ (x) =

x√
1− x2

bm
ℓ Pm+1

ℓ (x)− cm
ℓ Pm+2

ℓ (x)

dPm
ℓ

dx
(x) =

1√
x2 −1

dm
ℓ Pm−1

ℓ (x)− xm
x2 −1

Pm
ℓ (x) (30)

aℓ = 2ℓ−1 bm
ℓ =

2(m+1)
(ℓ+m+1)(ℓ−m)

cm
ℓ =

1
(ℓ+m+1)(ℓ−m)

dm
ℓ = (ℓ+m)(ℓ−m+1). (31)

āℓ = (2ℓ−1)
qℓℓ

qℓ−1
ℓ−1

(32)

b̄m
ℓ =

2(m+1)
(ℓ+m+1)(ℓ−m)

qm
ℓ

qm+1
ℓ

(33)



c̄m
ℓ =

1
(ℓ+m+1)(ℓ−m)

qm
ℓ

qm+2
ℓ

. (34)

d̄m
ℓ = (ℓ+m)(ℓ−m+1)

qm
ℓ

qm−1
ℓ

. (35)

3.1 Orthonormalization
Along the diagonal, the m-varying recurrence is the same
as the ℓ-varying recurrence (20), thus the base case re-
mains the same,

P̄0
0 (x) =

√
1

4π
. (19)

The diagonal recursion factor also remains, though we
continue to substitute m for ℓ for the sake of consistency.

ām =

√
2m+1

2m

The rest are derived by substituting (3) into (33–35).

b̄m
ℓ =

2(m+1)√
(ℓ+m+1)(ℓ−m)

,

c̄m
ℓ =

√
(ℓ+m+2)
(ℓ+m+1)

(ℓ−m−1)
(ℓ−m)

,

d̄m
ℓ =

√
(ℓ+m)(ℓ−m+1). (36)

3.2 Geodesy 4π Normalization
The discussion of the ℓ-varying recurrence in Section 2.3
also applies to the m-varying recurrence. The orthonor-
malization (3) differs from the 4π normalization (4) only
by a constant, so the m-varying 4π recurrence factors are
the same as the orthonormal recurrence factors (36), and
the base case eliminates the constant, P̄0

0 (x) = 1. These re-
sults are confirmed by Holmes and Featherstone [4], given
there as Equations (19) and (22).

3.3 Seminormalization
The seminormalization (5) differs from the orthonormal-
ization by a factor

√
2ℓ+1/4π. In the context of an m-

varying recurrence, where ℓ is held constant, a factor of ℓ
simply cancels out. Thus the derivations (33–35) of the
seminormal recurrence factors b̄m

ℓ , c̄m
ℓ , and d̄m

ℓ directly re-
semble the derivation of the corresponding orthonormal
recurrence factors, and the results are the same.

The one circumstance where ℓ varies is in the defini-
tion (32) of the diagonal recurrence factor āℓ. Of course,
the computation on the diagonal is identical between the

ℓ-varying and m-varying recurrences. Therefore, the semi-
normalized factors for the m-varying recurrence are a se-
lection of three of the orthonormal m-varying factors (36)
and one seminormal ℓ-varying factor (26).

āℓ =

√
2ℓ−1

2ℓ

b̄m
ℓ =

2(m+1)√
(ℓ+m+1)(ℓ−m)

,

c̄m
ℓ =

√
(ℓ+m+2)
(ℓ+m+1)

(ℓ−m−1)
(ℓ−m)

,

d̄m
ℓ =

√
(ℓ+m)(ℓ−m+1), (37)

with P̄0
0 (x) = 1.

3.4 The real normalization
As given by (6), the normalization of the real form of the
spherical harmonic basis introduces a factor of

√
2 where

m ̸= 0. The impact of this is slight. The
√

2 is substituted
into both the numerator and the denominator of all three
of recurrence factor equations (15), (16), and (17), and
thus it immediately cancels out wherever it appears, leav-
ing the general solutions (20), (21), and (22) intact.

However, a1 is evaluated in terms of q1
1 and q0

0, so the√
2 appears in the numerator, but not the denominator.

Thus, while the complex form of q1
1 evaluates to

√
3/2,

the real form evaluates to
√

3. In practice, this may be
taken into account by including the definition

P̄1
1 (x) =

√
3
√

1− x2 (38)

in the base case of the recursion, rather than computing
it using the definition of Pℓ

ℓ . This is the form presented
by Holmes and Featherstone [4].
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