Matrix Inverse
The
inverse
undoes a transformation.
\[\M{M}\cdot \M{M}^{-1}=\M{I}\] \[\M{M}^{-1}\cdot \M{M}=\M{I}\]
Inverse matrices compose on the
left
.
\[(\M{A}\cdot \M{B})^{-1}=\M{B}^{-1}\cdot \M{A}^{-1}\]